organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ghulam Qadeer,^a Nasim Hasan Rama^a* and Qing-Shan Li^b

^aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and ^bSchool of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, People's Republic of China

Correspondence e-mail: nasim_hasan_rama@hotmail.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.044 wR factor = 0.125 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(Carboxymethyl)-4,6-dimethoxybenzoic acid

The title compound, $C_{11}H_{12}O_6$, is a key intermediate for the synthesis of naturally occurring biologically active isocoumarin derivatives. In the crystal packing, molecules are linked into a two-dimensional network structure *via* intermolecular $C-H\cdots O$ hydrogen bonds.

Comment

The title compound, (I), alternatively named 4,6-dimethoxyhomophthalic acid, is a key intermediate in the synthesis of naturally occurring biologically active isocoumarin and dihydroisocoumarin derivatives.

The molecular structure of (I) is shown in Fig. 1. The C9/O3/ O4 carboxyl group is tilted by $30.34 (9)^{\circ}$ with respect to the plane of the benzene ring, possibly as a result of the steric hindrance of the *ortho* substituents. The O3-C9-C2-C3 and O3-C9-C2-C1 torsion angles are 149.68 (14) and -29.6 (2)°, respectively.

In the crystal packing, intermolecular $C-H \cdots O$ hydrogenbond interactions (Table 1) link the molecules, forming a twodimensional network (Fig. 2).

Experimental

The title compound was synthesized from 3,5-dimethoxybenzaldehyde according to a literature procedure (Furniss *et al.*,

© 2006 International Union of Crystallography All rights reserved View of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Received 16 December 2005 Accepted 27 January 2006 1989). Light-yellow single crystals suitable for X-ray analysis were obtained by recystallization from an ethyl acetate solution.

Z = 2

 $D_r = 1.442 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

reflections $\theta = 2.7 - 28.2^{\circ}$

 $\mu = 0.12~\mathrm{mm}^{-1}$

T = 292 (2) K

Block, light yellow

 $0.24 \times 0.20 \times 0.20$ mm

 $w = 1/[\sigma^2(F_0^2) + (0.0658P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.0652P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Cell parameters from 2688

Crystal data

 $C_{11}H_{12}O_6$ $M_r = 240.21$ Triclinic, P1 a = 7.2886 (10) Åb = 7.9631 (11) Åc = 10.2758 (14) Å $\alpha = 105.937(2)^{\circ}$ $\beta = 103.444$ (2) $\gamma = 93.211 \ (2)^{\circ}$ $V = 553.17 (13) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector	2380 independent reflections
diffractometer	2074 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.966, T_{\max} = 0.977$	$k = -10 \rightarrow 10$
4782 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.126 S = 1.082380 reflections 162 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C7−H7 <i>B</i> ···O3	0.97	2.43	2.7829 (19)	101
$C10-H10C\cdots O2^{i}$	0.96	2.56	3.4144 (19)	148
$O4-H4A\cdots O3^{ii}$	0.850 (10)	1.821 (11)	2.6606 (14)	169 (2)
$O1\!-\!H1\!\cdots\!O2^{iii}$	0.853 (10)	1.801 (10)	2.6532 (14)	178 (2)
Symmetry codes:	(i) $-x, -y +$	-1, -z + 1; (ii)	-x, -y + 2, -x + 2, -y + 2,	-z + 2; (iii)
-x + 1, -y + 1, -z +	2.		-	

The H atoms of the carboxylic groups were located in a difference Fourier map and refined isotropically. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms,

Figure 2

The crystal packing of the title compound, viewed approximately along the *a* axis. Hydrogen bonds are shown as dashed lines [symmetry codes: (a) 1 - x, 1 - y, 2 - z; (b) -x, 2 - y, 2 - z; (c) -x, 1 - y, 1 - z].

with C-H = 0.93–0.96 Å, and $U_{iso}(H) = 1.2$ (aromatic and methylene H atom) or 1.5 (methyl H atoms) times $U_{eq}(C)$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge funds from the URF project, Quaid-I-Azam University, Islamabad, Pakistan.

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Furniss, S. B., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1989). Vogel's Textbook of Practical Organic Chemistry, 5th ed., pp. 410, 464, 1016, 1039. London: Addison-Wesley Longman Limited.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.